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Abstract 

The tensor virial equations of notion are developed.  They 

are found to be tensor equations of second rank which upon 

contraction give the usual scalar virial equation.  The tensor 

virial equations may be applied to anisotropic systems in the same 

manner that the scalar virial equation is anplied to isotropic 

systems.  Several applications of the tensor virial equations 

are considered.  The diffusion of ions through a magnetic field 

and the diffusion of molecules through a gas are calculated. 

The derivation of the Navier - Stokes eqijations and the Reynolds 

stress tensor for a turbulent flow is developed, leading in a 

natural wav to Prandtl's mixing lenrth ideas.  The dynamics of a 

self gravitating oscillating gas cloud is investigated.  The 

expressions for gravitating homogeneous elliosoidal regions are 

worked out for use in oroblems involving inverse square inter- 

actions, e.f„   galactic dynamics, clouds of charged oarticles , etc. 

Because of the aoolicabilitv to hydromagnetics, the stress tensor 

formulation of the tensor virial equations is developed in the 

last section. 
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Introduction 

0.1  The use of the virial theorem in kinetic theory is well 

known.  It does not seem to have been remarked with sufficient 

generality that the virial equation can be extended to a set of 

equations between tensor components.  A3 the formulas of the 

first section show, these relations ai e essential]y equations of 

motion for the ordinary moment of inertia tensor of an assembly 

of particles.  The usual scalar virial theorem results from the 

tensor equations bv the process of contraction.  The tensor 

virial equations are useful in problems of the dynamics of complex 

systems, especially in hydrodynamics and transport theory where 

the actual integration of the equations of motion is not practical. 

One may then obtain approximate information by investigating 

the behavior of the moment of inertia of the system or of a 

subsystem, e.g. an eddy.  The tensor form of the equations permits 

one to obtain results for anisotropic motions wherever the scalar 

virial can he applied to isotropic motions. 

The method hrs oroved useful in astronhysical problems, 

particularly those dealing with the dynamics of a finite region, 

e.g. the dynamics of an individual star, clusters of stars, and 

"alaxies '.  We shall treat some illustrative examples in trans- 

nort theory.  We shall find that the main advantage will ^e a 

means of sidestepping uninteresting detail, such as the precise 

densitv distribution, allowing one to compute directly the more 

pertinent quantities, e.g. mean diffusion or expansion rates, 

mean pressures and viscous stresses etc. 

We shall derive the Navier - Stokes equations from the tensor 
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viriai equations and show that the oarallelism of viscous and 
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turbulent stresses is inherent in the theory without any 

artificiality.  Thus, it forms a basis for the turbulence theories 

to be found elsewhere'~a.     The generality of our results makes them 
. S - • --- 

applicable to the construction of a statistical magnetohydrodynamic 
>»•,      >•>,<•  JT     _. » . • 

theory of the  same nature   as   existing  turbulence   theories. 

It  is  well known  that   the scalar viriai   theorem holds "in" 

quantum mechanics*,   an  extension  of  the  tensor viriai theorem 

to the   quantum mechanical  case should be oossible ,   but will not 

be  attempted here. 
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Lagrangisn Formulation 

1.1  Consider a system of particles in a space with the cartesian 

coordinates x .  We shall for the moment fix our attention on 

the  vth particle.  We represent its mass bv m and its position v 
bv    x   .     We   assume  that  all   velocities   are  small   C">mt>ared  to   the 

i 
* 

sriecd  of  lipht.     The  Lagrangian   is  written 

L =     T  -     V v v v 
where     T  and     V represent  the  kinetic  and ootential   energies, 

(1) 

Let us introduce the svmbol  Q, to denote those forces for 

which a scalar potential does not exist.  In this category we 

include all forces of constraint.  The  Q. are defined as the v 1 

differential coefficients in the expression for the wbrlc 

8   w = Q,<6 x1 v   v i v (2) 

Repeated italic indices irmly summation convention; Greek do not. 

The b  x represent an arbitrary displacement of the vth particle 

under the effect of all those forces not included in V. v 
Lagrange's   equations  for  the  vth particle  become 

V 

TxX 
V 

n 

Multiplying  by    x'-'  gives   us   the   tensor   equation  of   second   rank 

which   riav  he  written  as 

d 
dt 

XJ  V 

(v 
-      V 

3 L 
V + x'! 

V 

3  L 
V 

3  £i 
vA 3  xl 

V 

+ V*' V^i 
(4; 

-• i 

3! 

I 
Consider now the sum over a number of particles in the 

space.  We shall indicate the summation by In practice this 

sum is usually effected by summing over all particles in a simply 

connected region of space, though in some diffusion problems 
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tgH%fatomm*&ai*l&tlllfi&*0   '   .   '• 9 i " g*g 

(cf.   2.12)   this   Is  not the  case.     We   define  the  tensors 

i i       *—     v      -5—rf ••' v o x7 

v 

2Ti.i= ?/' ^ v TV 
V 

v     T1F 

(5) 

(6) 

(7) 

1' * i 

••'•• 

An- x1     3L 
" _ 

and  the  scalars 
. 

-SI  L 
v  v 

8) 

(9) 

T = 

V = V 

(10) 

(11) 

Thus, L, T, and V are the Lagrangian, kinetic energy, and potential 

energy respectively of the particles over which we are sunning. 

(4) may be rewritten as 

d _ 
dt V 2Tij+ * ij +p-ij (12) 

These tensors admit of a straight forward internretation. 

The diagonal components of J, ,  are -just 
J..1 

f 
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2J aa •4S dt 

/     cN2 
vm   (vx  ) (13) 

We  do  not  use   summation  convention  on  Greek  indices,     ^he  diagonal 

terns of  J. ,  are,   then,  essentially the rate of  change  of the 

inertia  tensor.     The  off  diagonal   terms   represent  the  p.npulnr 

momentum  of  the system.     Now  3L/3 x"1"  is   iust    m xJ.     Thus 
'    v J V   V 

\ 

!>• 

1 

2T 
ij vVV* (14) 

The spur of T. , is simply T, the total kinetic energy of the 

system.  Hence, we call T. . the kinetic tensor. CD.  ., on the 

other hand, is given by 

5"   x1 -2L 
T*v    8v^ 

so  that ,   if V  is   a homogeneous  function  of degree n  cf  the    x  t 

Euler's  theorem gives 

<%, = - nV (15) 

i.e.   the  spur of <$*, .  is   some number   --n  times   the potential 

energy of the system.     Hence we  call SP. ,  the potential   tensor 

of the  system. 

(5)  may be  resolved   into   it-*3   P^TTimetric   £>nd  antj s'^metric 

parts.     We  define 

"ij       f 2     v 
m X     x** 

v  v     v (16) 

K<<  - 1 ij 
.m 

2     v 
x      X'1'    -       X^   X 

V       V V       J 
.A (17) 

so  that 
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dt   ~ij I.,  = 1   (J,4   +  J.,) ij      .li- 
ds) 

i 

Further,  we  let 

K 
ij 

= 1   U, ,  -   J.J t    "U Ji' 

Ti^l^. + cjp.. 

ij 
=  1 <ft. _ <£t 

M, ,  = 1 ^[A^ 
Ni3=i 

Thus we have the symmetric and anti-symmetric equations 

/. 

(19) 

(20) 

(21) 

(22) 

(23) 

—c-     I  = 2T  + T  + M 
dt2  

1ij  _^13 +  I ij + nij 
(24) 

* 

d 
dt Wij -ij 'ij 

(25) 

The symmetric equation gives the manner in which the moment 

of inertia tensor, I**, varies.  The antisymmetric equation gives 

the rate of change of the angular momentum K. . of the region. 

It is well known that if the interaction of the narticles 

mav be ex-Dressed in terms of central force fields, they c'o not 

transfer angular momentum.  Hence, in the absence of external 

fields we have 

— ij = HU = ° (26) 

I 
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so   that   (14)   and   (15)   may be  rewritten 
p 

dtd     ij ij •*«,   +-ft«. ij i J 

K. .   = 0 

(27) 

(28) 
dt    ij 

(See' Appendix A and B for a more general development and further 

discussion.) 

1.2 To obtain the conventional scalar virial equation we 

\ 

II 

\ 

contract   (1.2.5)   and obtain 

dt 
J = 2T  +<^   +11 (1) 

where in general we define 

We note from (1.2.8) that 

X £ X 
ii 

I 

X 

J  =   J. 
ii 

=     a 

= 1     d 

"ii 

(2) 

2     dt     v 
m 3 v v 

where 

i 

H 
1 

ii    .: 

/= si^2 

l 
i 

Using   (2)   we ma:'' write   in place  of   (1) 

(3) 

fc 
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2,1  It will be our purpose in this section to illustrate some of 

the methods of application of the tensor virial equations to 

transport problems and associated kinetic nhenomena. 

»• 

. 

!' 

2.11 Consider a simply connected cloud of electrons and protons 

in a uniform magnetic field.  We assume that the net ch.qrge of 

the cloud is zero and recombination is negligible.  The Lagrangian 

for the vth oarticle is 

L = 1 m. v v* + vq 

£ v v  v A1 v1 
V  V (1) 

where A  is the vector potential representing the magnetic field, 

q the charge.  It follows that 

3„L 
3 vi v 

=  V V 
i   q   . i m vx + vH ..A - v 

! 

-a 

3 x-1-   c     3 x* 
v v 

~2Jm£L**»-  - 

We obtain from (1.1.12), after some rearranging 

d <«-—    i 
-dt ^L vmvv v 

** 

.1XJ i 1 q 
wm v vJ - xJv/* 
v v v v -*- c dt  '  Sx1 

~)    (2) 

J 
If we assume the magnetic field to be of magnitude B and 

in the positive z direction, then we may take 

K  = -I By, A = 1 Bx, A = o, aAj_ = o (3) 
at 

Thus, we obtain the three equations 

Hi 
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.m v    x^  = dt v  v  xv (. 
e 

ra v    v1  + v  v xv 
• 0 _JL v     B 

C    V    V 

9 

(4) 

I 
4 

-rr ^        m  V     XJ   = dt •c^~ v  v  yv 

dt ^_  v*W,xJ = 

1  m v    v*'  -    x*' ,v   v yv v v    B 
V   X 

vmvvzvv i 

(5) 

(6) 

Summing over the whole  cloud the off diagonal terms  average out 

because  there  is  no   correlation  between    v , and    v%  or    x    and    x^. 
V      ' V       ' V V        ' 

(i ^ j)   as  we  sum over v.     We  are left with   the  diagonal   terms 

d 
dt 

_d 
dt 

„m v    x    = v v xv 

vravvyvy    = 

v»W  + 
S v  v y      j 

(7) 

r,ra(  v )2 -    vq    y v    B~j <v    v y —~ vJv x       J 
(8) 

• 

1: 

d 
dt vmvvzvz m(   v  )2 

v    v  z 
(9) 

i 

We  see from   (9)   that we have free  expansion   in   the   z  direction. 

Consider   (7).     We must  compute   ^>       a x v    B/c.     We  shall v v v y ' 

describe the average position of a oarticle between successive 

collisions by means of the center of mass of its trajectory.  The 

projection on the xy plane of the velocity is 

vvxy=vGx)2 +(vv
2 (io) 

! 
; 

- • 

B 

The radius of curvature of the nro lection on the xy olane is 

(ID 

$1 
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We shall describe the projection of the trajectory onto the 

xy plane as shown in Figure 1.  The $T] axes are oriented so that 

the trajectory is symmetric about the £ axis.  The f)  component of 

the moment of the trajectory about 5 = a is 

!„ («) = / ( f - a)   ds 

where  ds   is   an  element of length along  the  trajectory.     We have 

1^   (a)   = / (Acosco   -  a)   doo 

since 

c = Acoso;  and ds = /> d^o 

where to Is measured from the positive 5 axis.  We obtain 

1^ (a) = A 2'Aaintf- a</J 

if 5 = a,  T] = 0  is   the   center of mass  of the   trajectory,   I     (a)   = 0 

giving 

a = _    sin  2 

2 

(12) 

Returning to the xy coordinate system, if we take the center 

of mass of the trajectory to have an abscissa A , then the center 

of the trajectory is seen from Pig. 2 to be at x + a cos<p. 

The trajectory is traversed in the direction indicated for 

q^O, B,>0# If 0 is the angle between the positive x axis and 

the line drawn through the center of the trajectory and a given 

point on the trajectory, then for the point on the trajectory 

x = x„ + a cos V t /\  co: 

vw -  -v-  cos 6 7    xy 

(13) 

(14) 

Hence,  using   (12),   (13),   and   (14) 

i:' 1 

1 

J! 
,1 
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XV       = 
7 

4 ^ 
,                        A    sin  ~ A 2 -v__(x_cos©  +/\   n^    cos^> cose     + /\cos  ©   ) 

XV  0 
2 

11 

(15) 

We shall now average over the tra lectors b^ operating with 

We obtain 

(xV© = vxy x_coscpSinf + /\ 

2 

sin2 ^    2 2  cos a; 

* 
(16) 

- A f.       sino,     \ 
g   ^X      y^    C TJ 

where the subscript © indicates that the average over © has been 

carried out. 

We now average over all possible orientations of the projec- 

tion of the trajectory by operating with 

We obtain 

. <»TV ^S. iin2^t 
- l 

*' 

(17) 

Now, if the mean free path of a particle is X, then the probability 

of its traveling a distance s between collisions is exp £-s/x] (l/X). 

But*-p= s//\ .     Thus,   the average over  s  gives 

I -.— 
"••in  •!  immnim J      '_       •  •'  r »w >»uiwiii_in—ie'iiilpy-i-i  .j. 
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xi exn(-s/X) «9-   -1 d(f) 

12: 

i 

,A 
*Z 

J33 

2A (   .        / 2A dtl   exp ;i - -*-* u 
*   2 sin    u 
 rr~ -J- 

(18) 

which may be  integrated     to  giv< 

I 

I 

(XV  ) = ^La \ 2A 

Using   (11)   we obtain 

Arctan 7^       2X In     1 
<*». 

-1>  (19) 

V ..x v     B =   m (vv*y), |sA 
c   v  v'y v~* 2 

Thus 

r 2    .   v" 

Arctan X~M» (><£>] •'] 

tt 
m(  v  )* + *-    xv    B v x' c   v v y v 

m  < (  v  ) v      )   v x 

+ I <vV)2 

(20L 

X ±. A Arctan ^-gln     I 1  + y^ j J   -1 

However, we exDect the velocity to be statistically iso- 

tropic over the xy plane.  Thus 

•« i 

• 

( v )2 = - ( v )2 Vx'   2 vv xy' (21) 

and we obtain 

.m( v )2 + ~ .x v B v v x c v v y = f (x/A) vm(vvx) 
(22) 

1 
whe r e 

H •-•-'-—avna»'>a*w=^«teaB—'   " '  '••*•'-*mnmi tin**-itfmammmRii&HNlGHIBBHR t*wwWiimi.|»jW|w»wwes;.|.|..i i'"-' 
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f(X/A)    =    ^ 

We  note  that 

f(x) 

Arc tan 7^: -r^r- in 6 X2 

"7? 

,        1     2        1      4   ,   _6   /   x 1 ~  g  x    + -^ x    +0     (x) 

f(x)~   *-£ 2 +  ln(l  + x*) 

We rewrite   (7),   (8),  and   (9)   as 

x,   +  °~6    '*' 

ftz: .v•1 = f(vA) z. v»(/x)' 

13 

(23) 

(24) 

* I 

^IvVyv7 = f(VA) 

_d_ 
dt- 

vm(vV
y
r 

vmvvzvz =. V    2 

(25) 

(26) 

I 

(24), (25), and (26) are not sufficient to determine the form 

of /o(x, y, z).  They represent a restriction on the system of 

particles under consideration, though they by no means determine 

a unique state of the system.  The-^ give no information concerning 

the form of the spatial distribution of the particles.  Hence in 

order to use (24), (25), and (26) we must supply a form of distri- 

bution over space.  (24), (25), and (26)  will then tell us how 

the scale of the distribution varies with time.  With three 

equations it is obvious that the form of the distribution may 

be characterized bv three riarameters, one parameter describing 

the scale of the distribution in each of the three cirections. 

At first thought it seems a serious drawback that our 

equations will not supply us with the form of the soatial dis- 

tribution as well as its variation with time.  However, it must 

U 
*\ 1 
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be -emembered that the main difficult'"- in oroblems in transport 

theory when the solution is attempted f r ~m the Boltzmann equation 

is the tremendous mathematical complexitv of the oroblen.  The 

complexity is brought about by our having to determine simultan- 

eously the form of the spatial distribution as well as the 

variation with time.  Hence we must cut down on the amount of 

information that we seek to obtain from our calculations, 

supplying the deficit by some informed estimates.  The weakness 

of our method is, then, the source of its main advantage.  In 

most cases the form of the soatial distribution is not as impor- 

tant to us as the variation in time and is usually known fairly 

well anyway.  The theory of stochastic processes, for instance, 

tells us that in most cases the snatial distribution will be 

gaussian for sufficiently large values of time.  The end result 

is that in practice we may assume a form for the snatial distri- 

bution characterized by three units of scale, one in each 

direction, and determine the variation with time of the three 

units of scale and ultimately of the spatial distribution . 

For the problem at hand, any initial snatial distribution 

will eventually diffuse into a gaussian.  However, the nuroose 

of this paner is to exhibit the general mehtods rather than to 

solve accurately specific problems.  Therefore, to save computation 

we shall assume that the particles are constrained to a homo- 

geneous distribution within a rectangular parallelepii)ed with 

sides a„ -(t) and a,(t) and center at the origin.  To compare this 

artificial problem with a real problem in nature we identify the 

a^ (t) and aa(t) as characteristic scales of the distributions, 

say as twice the mean deviation of the final gaustsian distribution. 
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The  expansion   is restricted by the  equation  of continuitv 

to 

vx(x>t}   =   *)*•*   (t>   x 

v   (y,t)   - K  w  (t)   y 
y ' •  ' "        F| xy 

vz(z,t)  =    |<       (t)   z 

(2*) 

(28) 

(29) 

It follows  that 

da. 
_xy  _ 

dt fjxy   (t)   *Scy (30) 

6 vC • 

Now,   in   ^      vmvv-]rvx  a11  ^otio"3  °f  smaller  scale  than   the 
v -   "V 

dilatation  average out,   leaving us with 

vmvvxvx = J dV   fix,  U)  *' 

• i M ^xy <*> 4r (t) 

vvzvz = l?M   1*(t>   4  (t) 

where  M is  the to>tal mass  of the cloud. 

M = .m 

(31) 

(32) 

(33) 

We let {v   )     represent the mean square velocity in the x and also x 

in the y direction (cf. (21)), and (v )  in the z direction.  Then z 

vm(vvx)2=MTv7T2 (34) 

e to.      (v^T    and Tv^T  ,   it must  be  remembered,   include  the  small 

scale motions  as  well  as   the dilatation   velocity.     Hence  the  total 
2 energy density  (v)  /2 is  given by 

i i 
: i 

•  ^Wv;-;'r; "*—-- •:••> -.• .--v'^,   .*••?:• 
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\^ = *(\^r) +?^p" 
—2 

(35) 

Conservation of energ-f implies that v  is independent- of t. 

Using (31) and (34), we may now write (24) nnd (25) as 

_d_ 
dt Wt]   <7   U). = 12 f(x/A) TTT 

(32)   gives   (26)   as 

dt uw 
Using   (30)  we obtain 

d        "    't)   a?   (t) =  12 TFT2 

ft  [v(t) ft axy(t)]  = 12 f(VA) nrr2 

D It    I az^  ft    S(t il - 12 "^7 

(36) 

(37) 

Let us  consider several  special  solutions  of   (36)   and   (37). 

If B is  sufficiently small or f>   sufficiently large,   then  X<< /\ 

and f (X/A)'"~» 1.     Hence  the  diffusion   is  unhindered by B and we 

have  an  isotropic  adiabatic  expansion.     We   take 

In place of   (36)   and   (37)   we  obtain  the  single  equation 

which may be written 

=  4  v 

•^+  (ft) 
-    A   —2 = 4  v (38) 

1 

•1! 

m^SS^ 

I 
I 

• • 

I1 
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It should be noted that sufficient expansion will eventually 

increase "K  to where it is no longer less than /\ . 

If we consider the other extreme of a stronr field and/or a 

low density, "kP&/\, and f (X//\)'"s-0.  The cloud exoands only 

in the z direction.  The enerry of the expansion is 

2 

iMi.<« ?]•-*&) (59) 

The  energy of  all motions  of smaller scale  than  the parallelepiped 

is,   then, 

(40) 1 „ ^2 .    4   fel) 
2 " V 24    \ dt / 

(We note   the  division of  the motion   into  two  components   defending 

uuon the  scale relative  to   the   region  considered.     More will he 

said on  this   in  2.2L)     Assuming this   energy to  be  distributed 

isotropically over the  three  dimensions, we have  T      as   just  the 

energy  in  the  dilatation  velocity nlus   one thir 

in   the small  scale motion, 

mergy 

zz 24 dt 3 dt/ 

M 
6 

2        V 24 dt   / 

^+l   ("dtV 

(41) 

Thus, (37/ becomes 

a 
-2o u az 

2 d,2 

/  \2 

(42) 

Ncv let us put no restrictions on X but constrain the particles 

so that there is no expansion in the z direction.  This can be 

done by considering the region confined between two material 

planes i rpendicular to the z axis. 

II   I      !• V I III       III    »ll lllll ——»—~ 
----- .-K. -.--..-._        •••-: .••.•:':'.- •_;-«?! 
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Analogous   to   (39),   it  can be  shown  that  the  energy of  the 

expansion   in  the x  and y directions   is  each  given by   (M/24)(da     /dt) . 

Thus,   the motions  oT smaller  scale  than  the region  have  an  energy 

2       v 12 

/da V w (43) 

And,   assuming   isotropy,   T       and T       are   lust  equal  to the  energy ' <• •' »     xx yy 

of the  dilatation  olus  one  third, of  the  small   scale   energy  given 

in  (43). 

xx Xyy   24  \ dt /    3  2 V   12  \ dt / 

-»!*•>(>£ 
(44) 

(36) becomes 

'xy T^1 *   t1 " * f (VA)] (TP)  = "(VA> ~2 

(38), (42), and (45) are all of the same general form 

(45) 

6x \dxj (46) 

where  a and  P are  constants   if we  neglect the variation of X with 

the  expansion.     To   integrate   (46)  we  let p  = dy/dx  and write 

.2 

dx 
£_Z = 3E _      dp. 

2      dx      p dy (47) 

We obtain 

U*/        a    _ 1 -prr (48) 

where  C  is  the  c    istant of integration. 

Let us  assume  that when  t =  0  there   is no   expansion  and 

y = y  •     (48)   becomes 

^•^or^-^'^Bgiaaij-'-'. •-rw-^-J'wg ;..... ~ =i^"S*^«a3I3S&is5 i5ssKii] BeK"-i ^;»*-s.. ~* •!*'-•• 
-:' 
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dx a ff) 
2a 

(49) 

Thus, W3 obtain the solution hy quadrature, 

x = 

a -, 

(50) 
2a   2a 

7  - v " o 

For (38) we have a = 1 and B = 4 v2.  (49) and (50) give the 

rate of expansion of each face of the parallelepiped as 

2 J 1/2 
lAa(t) -J~^~    \l  - 2 dt 

and the  length of each side as 

2 

a(o) 
attT 

-p .2 

(51) 

a(t)   - a^o) = 4 72 t 

For large values of t we note that the velocity of expansion 

(52) 

2     dt  a(t) v2 (53) 

in  agreement with the  usual  result for expansion into   a vacuum. 

For   (42),   a = 1/3,   8  = 4 ~v2.      (49)   and   (50) give 

2/3 ) 1/2 

2    dt 
lda* -/T* 1  - 

az(o) 
aTtT (54) 

t  - 2/3/. N _a '    (t)   -  a 
2 V 3 v2 

For  large  values  of  t,  the rate of  expansion  is 

1  11 '2 r * 
2/3(o) J     '•   La2/5(t) + 2a^3(o)j   (55) 

i   da 
x Z 
2    dt ^/3v2 (56) 

Finally,   for   (46) 

a  = 1  - i    f(V,A) 

S ^ 4fU/\) "v2 

Sstl 

I 
1 i 

: v 

- i 

"51 
91 

Hi 
• -4 

to 

"'*f 

1 

,: afes=r;_3?l! 
aaas^;-fni|fnff,r "".'' **""•''* 
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We obtain the diffusion rate as 

n   da 
2    dt 

fU/A)   v2 

1  - i f (X/A) 

1/S 

1  - 
aKY(0) 

L *y 

2(l-f (X/A)/3J 1/2 
(57) 

For  large values  of  t, 

2     dt 
f(X/A)  yg 

1 - i f (X/A ) 

1/2 

(58) 

We note  that   if X<</\,   f(X/A)—' 1  and 

-,   da 
2     dt •V 3 v ^2 

(59) 

(50) results in an integral which must be evaluated numerically 

except for special values of f (X/A) • 

If one wishes to consider further complications such as a 

uniform distribution of neutral particles which inhibit the dif- 

fusion of the charged particles, one introduces an additional 

force into ^>       P x^  due to collisions of the charged with the 

neutral particles. 

2.12 As an example of a diffusion problem consider a snace 

filled with a homogeneous distribution of neutral particles.  At 

time t we murk every particle within the rectangle with sides 
o 

a « a , and a and center at the origin.  We ask how these marked 
x*  y*     z 
particles will be spread out at some subsequent time t.  As has 

been pointed out, the tensor virial equations do not determine 

the form of the spatial distribution, but, upon assuming some 

spatial distribution, indicate how it will vary with time.  It is 

convenient to express this idea by stating that we use the 

tensor virial equations to determine the dynamical conditions for 

# 
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a given  scale without  inquiring   into   fluctuations  of smaller 

scale.     Now,   it   can be   shown  from   the   theory of  stochastic 

processes   that   the   asymptotic  distribution  as   t—*OD    is  a gaussian 

centeiing  about  the origin.     Obviously our  initial  step function 

distribution rounds   its   corners   and spreads  out with  increasing 

time.     It  is  not  our ourpose here  to  go   into  so  much detail. 

Thus,  we   describe  the   distribution by the  three   lengths  a   (t), 

a  (t),   and a   (t).     For t = t    we  identify them with a  ,   a   ,  and T • 2 o ' x       y' 
a  .     They correspond  to  approximately  twice   the  standard deviation 

2 

of the distribution. 

The tensor virial equations reduce :o 

dt [al(t) A a. U) ^ 0 (1) 

since  the pressure  on  the boundaries   just balances   the kinetic 

tensor.     The   solution of   (1)   is   readily shown   to  be 

vL/2 tti(t)   = ai(to(t) 

/ *.   \l/2 
(2) 

=  a. 1    t. 

-S- a   (t)   = dt     iKZ)        2t 
-i r*Jf t / (3) 

i 
-.. 

m 
•    v 

II 
-I 

We must now  evaluate   t   •     The  rate  of  increase of &-(t}   at o P 

each face of the parallelepiped is (1/2)(da«/dt).  At time t 

the expansion occurs only within a distance L of each face, 

where L is the mean free path; the particles farther into the 

parallelepiped are as yet undisturbed.  Cf all the particles in 

the parallelepiped, a fraction L/ Lao^ )/2j are contained in 

the slab of thickness L and normal to the p direction.  Half of 

• 

^i^tefijpfraiWBBi MW m**nmt «» am,     •   — 
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these  particles  are  moving outward   across  the  lace with a velocity 

y(y*T      •     Therefore,   the  fraction L/afi(t   )   of  the oarticles  have p o 

a velocity i/iv*)*       outward across a face normal to the 6 direction, 

We write that the rate of change of the characteristic length 

aR(t)/2 is 

_d_ 
dt 

!fiiii ^v vw (4) 

of time t .  Putting t = t in (3) and comparing with (4), we 

obtain 
2 

*  -   \— 0   4L-/T^f2 

Thus, from (2) and (3) we obtain 

o1(t) = 2 [h ifWp  t]1^ 

(5) 

ft ai(t) = 
W3" 

• '/e 

(6) 

(7) 

One advantage of this method is obviously the doing away 

with the infinite diffusion rate obtained at t = t  if the oroblem o 

were formulated in the conventional manner in terms of V^ .  The 

thermal diffusion equation is altered to give a finite rate of 

propagation of thermal disturbances. 

2.2  Let us use (1.1.12) to derive the equations of motion of 

a finite region of fluid.  We consider a finite region moving 

with the fluid.  We denote the center of mass of the region by 

the cartesian coordinates x .  We shall locate points within the 

region relative to the center of mass of the region by the 

coordinates § , so that the coordinates of the vth particle 

become 

•*P— rjuf ipa fimm*'    ''  — 86"i«ii~i"rfr"iTr>ii  •; 



. X~ =  X" 
V      V 

The velocity of the vth particle is 

v     at 

which we   shall find  convenient   to write  as 

Cle arly 

y - v1 • / 

rf  -   £ V*X  . 0 

23 

(1) 

(2) 

(3) 

(4) 

We refer to the u as the local and v as the translocal 

velocity field of the region.  Thus, the local field is the portion 

of the velocity composed of fluctuations of smaller scale than 

the region.  Or, in other words, the local field is the portion 

which does average out^ the translocal field is the oortion of 

the velocity field which does not average out over the region. 

Prom (1.1.5) - (1.1.7) and (4) it follows that 

rlj' = MxV + m t1  u^ 
V V  V 

i: 

t 

ii 

-., 

i 
- J» - 

r 

T~   y1 FJ  = x1 
V v V     V 

!TiJ = Mv1^ + >     m u1 u^ 

(1.1.12); becomes after sone rearranging of terms 

l u1 uJ + 2" ft F1 

v v     -fr— v *  v 

_d_ 
dt m |J u1 v v- V 

(5) 

\ 

I 
i 
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But, from Newton's equations we have 

K^1 = 1      A*- 
(6) 

Thus 

dt vmv f
1 J = - vmv u u^ + V^ V 

(v) 

for the region, independently of the motion of its center of mass 

We shall now use (7) to evaluate F^.  We decompose 

F  into two portions, 

pi _ pi + 
> V o 

(8) 

F represents the mean external force e.g. gravitational or 

electric fields.  We shall call it the translocal force field. 

Finally f denotes the short range forces of collision of the 

molecules. 

Since F ^ is independent of nosition in the region, it 

being the average over the region and at most a function of the 

type of particle, we have 

F J I1 
V O V 

= 0 (9) 

from   (4).     (7)   becomes 

_d_ 
dt £ uU* vmv- V \v 

vVV3 j 4i rl 
V"* V" (10) 

Now, the f , being collisional forces, cancel out over the 

interior of the region. The only contribution can come from the 

surface of the region where collisions take place with particles 

net in the region, so that the equal and opposite force on the 

other colliding particle is not included in Thus, we find 
i * 

it convenient to define the usual stress tensor o~^  such that 

:J   -.-~^J,i><Wi<it yrmc*x.'jjcjrji'MMFT"'"•- >«ih>- ;»-;gf?MlHHHft* mmm mmmm mmmm   ••• 
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ic 6    dS  Is the force in the idirection across an element of area 

dS normal to the a direction.  6 ' represents the force exerted 

by the matter on the nositive side of dS on the matter on the 
5 

negative side.  This is the customary definition in elasticity 

and electromagnetic theory.  We shall replace ^>  by intepration 
v 

over the elements of volume dV. 

The introduction of a stress tensor and the associated 

processes and parameters such as integration, differentiation, 

pressure, viscosity, etc. requires a limited form of continuity 

in our hitherto unrestricted system*  Our notion of infinitesimal 

becomes that of the physical infinitesimal, viz. that the smallest 

elements of volume dV that we consider must be sufficiently 

large as to contain a large number of particles.  If n represents 

the number of particles in dV, then the fluctuation of n is of 

the order of -V~rT .  We must require that 

VrT < < n 

in order that our averaging process over dV have a smoothing 

effect.  To be treated as an infinitesimal, dV, of course, must 

be of smaller scale than the phenomena in which we are interested. 

The alternative to these restrictions on dV is to consider an 

ensemble of systems so that the average may be carried out over 

the given dV in each member system rather than .lust a single 

system. 

We rewrite (10) as 

dt 
(jdV^jV) = jdV^uV) +  jdskS

16J1 
(11) 

Gauss' theorem gives 

V 

i 
i 

•• 

S5 

i 

s 
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.d 
dt -((dV^V^)   =   jdV^uV1)     +   (dV^ktf1^*) (12) 

-jdV^uV)   +(dVdU  H-^
1
^ 

jk 

ai- 
ds) 

-3(5^  /3|     reDresents   the  force  in  the  i direction oer unit 

volume.     The  translocal portion of  -3<3^  /3f   ,  given  to   acceler- 

ating  the  entire   region,   cannot  contribute  to   )dV|   3d^  /df   . 

This   j.s  readily shown  if we note  that  the  translocal  portion  of 

-3d3k/3*ik is  defined as 

3c5^k \   _   _dvJ 

H* /x 

(14) 

Then 

Wf{^\ -f H1 

a 

= o 

by   (.4). 

The remaining portion of 3c5^' /3<f  is local to the region 

and is responsible for changing the shaoe of the region.  Since 
•    * 

6   **   is  the only stress  field present,   it follows   that  if  the 
1k /     k local   component  of  do>   /3§    vanishes,   then   the  region   is   in 

equilibrium.     We have  dJ  *ydt  = 0  or, 

and   (13)   becomes 

0 =   ) dV^uV    +     ^ dVd1J (15) 

T 
-A I 

-;! 
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which has the solution 
a 

61*   = -/OU   u yO •n ** (16) 

:* 

=     -2T ij (17) 

I 
i 
• 

Prom   (8)   and  (l1?)   we  obtain 

F 5-   +    C dsv<5ik 

>   o J       k 

r   P i .   r 
7 v °        ) 

dV-4=-(/0u1uk) 

(6)   becomes 

M^1 = 
dt 7^   - jdV^(^! 

t^iJ1 

(is) 

Consider now (x> u"""uJ).  If there is no shearing of the 

region, we expect no correlation over the region between u. and 

u'1. Hence (ouV) is zero if i ^ j.  The diagonal terms are 

nonzero and give the pressure.  If, however, there is an overall 

shearing of the region, we see that -there w.ill be a correlation 

between u and u^ for i / j.  Let the shearing be renr-esented by 

i 
3 

45 o v or "We see, then, that 2T •* represents the integral  . . 
the region of • the Reynolds or kinetic .stresses , wV"? .-.n mav be 
represented by pressure, 2Taa , and shearing stress -2TaP. 
<5>ij , as in (1.1.12), represent the integral over the region 
of all other stress fields, e.g. pravity, electric fields, etc. 
If we denote by IP-J the sum of the Reynolds and all other stress 
fields, then (1.1.12) may be written 

dt Jij = Y. 

If ^11 vanishes, so also aoes dJ^/dt, 
at greater length in 3.1. 

This will be discussed 

\ 

«. — 
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m 

3v /dx**  If the average scale in the P direction of the local 

i R R velocity field u is denoted by Lr , then with a velocity u we 

expect to find associated a velocity -L^3v /3x^ in the a direction. 

Hence, we write 

(19) 
ox 

X 

ox 

for a ^ p.  We define 

and write more generally 

a  S 

M-  =  Lo U L ) 

—a 
(/OU up)  =  -<^6 

aacS   P3  8v    aa  ay *;P 
a *IP 3x a 

(20) 

(21) 

• 

- 
- 

Thus, we rewrite (18) as 

3xa 
dV -| PP^ ^ 

3  3xP    9xP 

(22) 

which   is   the  equation  of motion  for  a  finite   region  of  fluid. 

.<£ 

- 

2.21 Let us consider some snecial cases of the eq-uati^ns of 

motion of a finite volume of fluid expressed in (2.2.22).  If 

we consider an incompressible flow, then 

3 - ° ax1 
* 

and the  last  term in   (2.2.22)   becomes 

3      /act     av ^c^y = )OTS h^ (i) 

If there are no compressibility effects, then to a fair degree of 

A 
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ctci approximation  the variation of  " ji  in   -"he direction of the  flow 

may be  neglected.     Hence,   we   are   able   to   rewrite   (2.2.22)   as 

H dv    _ 
dt >       F a +  \dV ~tf — v o j        -s—a v J       3x 

aa 

J (3     3XP 
PPU  Sv^ (2) 

.aa aa 

We note  that 

dv     =   - P 

where p       is  the pressure   in  the  a direction.     Tbas,   if  there  is 

an approach to   isotropy in  the  local motions,   we write 

P   =   - §<5h -x      (3) 

HI* 

=    rl/OU u.; 
O  ' 1 

and  the second term  in   (2)   becomes 

dv~4^aa  = -   dv^a 
3x 3x 

(4) 

(5) 

It is of interest to compare (4) with Batchelor's value  computed 

by Fourier transform methods from the theory of isotropic turbulence, 

Again, if there is an approach to isotropy in the local 

motions, we define 

u =  (-v uxu.) (6) 

so  that we may write 

L    =     (VL1^) 

a 1    - 
U        =     -7= U 

.a 

(7) 

(8) 

(9) 

"HsH3R»»ii«!£***««* t^,^-XK3^\i^<»'>**ZBZi^*rii\Utt&fa5txij&;»-S 

.. ..-.*.**«**« 

,;yta!5;iaagg^l.3; jnywacua*     -* • 
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(10) 

:• 

is 
i - 

and rewrite (2) for the case of isotropic local motions as 

J  ax1 I  ax1 

(11) 

*§f - 5Z P 
a - (dv %„ (12) 

If we let the size of the region approach zero, we obtain 

the usual Navier - Stokes equations for an incompressible fluid, 

,—a dv   Fa  1 8^   .  8 
dt       70 , a    „„i 

J. -a 
i v 

8xx  y 
(13) 

dx     3x' 

where P  is the force oer unit mass and v is [1//O  .  p and ^ 

are due only to the thermal motions, i.e. motions local to a 

scale of zero. 

_ 

2.22 It should be noted that " u- and p  or I 6     |.f and therefore 

p and u- are monotonical y increasing- functions of the size of 

the region considered,  v' and its space and time derivatives, on 

the other hand, are monotonically decreasing functions of the 

size of the region. 

It is of interest to note how with the tensor virial 

equation the velocity field v naturally resolves itself into 

the translocal and local velocity fields v  and u .  We note that 

only the statistical characteristics of the local field aonear in 

the field equations of the translocal field, (2.2.22)  Thus, we 

are not surprised to see the emergence of Prandtl's mixing length 

concept in computing (ou u") for i ^ j.  Altogether, then, it 

a 

i 
1 • 

k 
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would seem that the statistical representation of Prandtl's 

mixing length theory and the more extensive treatment carried 
7 Q 9 

out in Heisenberg's field equation '  and elsewhere  follow quite 

naturally from the tensor viriai equations of motion. 

2.3 The tensor viriai equations are particularly suited to 

investigation of the d^manics of finite r egions of matter.  The 

following examples are typical of those encountered in astro- 

physics in the treatment of gas clouds, star clusters, etc. and 

in diffusion problems.  In the treatment of the dynamics of ras 

clouds the tensor viriai equations are convenient becaus,e even 

with very artificial constraints the question of whether a term 

is to be included as a Potential enerp:-^ or as a kinetic energy 

is easily decided. 

2.31 Consider the radial oscillation of a gas cloud in its own 

gravitational field.  The tensor viriai equations d~s not give us 

the radial distribution matter.  To prevent the mathematics from 

becoming too complex we introduce the constraint that the density 

be homogeneous within the sphere of radius r (t) about the 

origin and zero outside.  Thus, the radial velocity at any ooint 

within the cloud is 

o 
(1) 

The motion of the system is thus describable by the single 

parameter r .  Hence, we use the scalar viriai equation (1.2.3) o 

It is readilv shown that 

V = - 5GM
2 

5r 12) 

I 

awNHWt 
jUii jMiHnii^wgBMIlJI—k* n 



I   =  4r M r 2 
lO   o 

32 

(3) 

where M is the mass of the sohere.  The contribution of the radial 

oscillations to T is 

T, = gr  M[ -^S) (4) 

Let us assume that the motions of smaller scale than r follow o 
polytrope  law so  that 

where 

—••   =   TTTffVT "  3 
o I   r_ 

oo o    o 

A corresponds   to  the  usual y~ written when  only  thermal motions 

are   considered.     For  instance,   if  there   is  no   dissipation, 

A =  5/? for turbulence  and for  the   thermal motions  in monatomic 

gases.     If more  than  one  type of  local motion   is  oresent,   we write 

0   ,'T     \3 (A    -   1) 
2T„  =M   >     TTT2   ( -?& )        a (5) a o   l    r^ a \      o 

• 

" 

(1,2.3)   becomes 

A2 

d ro 
JL2 

7-T-T2     „  3(A  -1) 
c  . \v  )       r ^     a _ 5 ^r—       a o       oo 
3 ^—                   3A  -2 

_ _£M_ 
dt a               rQ     a ro2 

a o 
a       ^Aa"  nVro 

(6) 

after cancelling out  a  factor of  3M/lOs     CJpon  integration vje 

obtain  the  energy equation 

• 

where c is the total energy per unit mas3.  We obtain r (t) by 

quadrature as 

n-ii•~»;»i:;H3;: rfflWfrlHW" '  t >W9 
mi.11. 
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t - t .A dr, 

\        rio £_ 10 ^-TvTT^ /r00 
. r 
j    oo 

,3(A„ - 1) 2GM 

   (8) 
1/2 

2.32 One finds in his applications of  the tensor virial equations 

that he usually uses rectangular parallelepipedal or ellipsoidal 

regions,  In the case that the repion is an isolated one,the 

parallelepiped becomes inconvenient because of the extreme 

complexity of the force field expressions from which the potential 

12 tensor is computed.   The expressions for the contribution to 

the potential tensor of the mutual inverse square interactions of 

the particles composing a homogeneous ellipsoid are recorded here. 

If external forces are present there will, of course, be an 

additional contribution to the potential tensor.  The expressions 

derived.in this section have been applied elsewhere to problems 
2 

in galactic dynamics. 

Consider ^articles of matter distributed uniformlv throughout 

the interior of an ellipsoid with semi-axes a.  Without loss of 

generality we orient our axes so that 

(1) 1>  2>  3 a ^ a — a 

12 It can be shown  for gravitational interaction that 

.aa £— = _JL GM
2(aa)2 N° (2) 

i 
• 

i! 

- 

where  M is   the mass   of  the  ellipsoid and 

2 

N2 = 

N-"-   = tu1)4 - iTif6 -\ [v -  E(uj,k) 

[(a1)2  -   (a3) 
2 .    ( E(o.k) 

k*(l -k*)        (1- kc) 

3TV cnv 
dnv 

(3) 

\(    (4) 

- 

)     tuiri llflWjgMMW •JIMIffl rMmmflre%s«a^^ 
-   omm mm»- 



• 

N3 = 
[(a1)2 - (a5)2]3^ I snv dhv  w  . x /   i 

cnv ,   .2 ) l - k 
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(5) 

where 

/   /a3 r        • 3 2 

.into = snv = / 1 -/Ar- ) , cnv =  j" »  ^"v = ^T        (6) 
V   \&   I a a 

(ax)2 - (a3)2 
(7) 

F(uj,k) and E(co,k) are Legendre's elliptic integrals of the first 

and second kinds respectively. 

If (v )  represents the mean velocity in the a direction, 

then for equilibrium of the elliosoid, (1.1.12) gives 

(va)2  =^ GM (aa)2 Na (8) 

If the f£3 cloud has rotational symmetry e.g. a soheroidal 

galaxy, and 

(9) 
1 2^3 a    = a   >  a  , 

aa 
then  the  <£>       reduce   to 

..11 .22 3GM' 
5a ' *"($) 

where 

^**s33 _       3GM2  v3>33 /a3>\ 

(10) 

(11) 

^w -   ;    hrsTsC3*""1 ^-y2)^ - yd -/>V2]    ^2> 
2(1  - j)6/iiL- 

1 

x 
'   V * 

> i 

: 

I ^55(y)   =   (l-y2)3/2Ly(1-y2) 
2vl/S ,   -1   M 2x1/2 s in       11  - y  ; • \-L<-'/ 

(8)   reduces   to 

t   ^2 
(v   ) /   2x2 (v   ) 3GM,Tyll 

5a m (14) 

HUM. —ME S"«.«rs«S^ 'rawrmpui- • Www. - 



3*2   3GM '\a  = 
5aJ *33 {$) (15) 

o.  2 
It would be well to rcemohasize the fact that the (v ) 

are the mean square values of the local velocity field and need 

not Be random in the usual sense.  We nnlv require that the 

average <J£  v over the region vanish.  Thus the rotational velocity 

of the region as well as smaller scale turbulence and therrral 

velocities are oart of the local velocitv field and make uo 

(v ) .  For instance, if we consider a sohericdal ralax?/- in whii 

the velocities local to the rotation are isotronic, it fellows 

that the rotation velocity vw is 

<02 = S^v1)2- (v3)2] 

from (14) and (15). 

Stress Tensor Formulation 
i 

3.1  Having discussed the tensor virial equations in terms of 

the kinetic and potential tensors, let us now state the relations 

in terms of stress tensors.  This formulation is particularly 

13 useful when   dealing with problems   in magnetohydro dynamics.       We 

shall  assume oonderamotive  forces  repr-esentabl e bv the general 

stress   tensor Z.J       Then   (1.1.12)  mav be written*1* 

|S ^dV/ovV  = jdV^ovV     +  [ dSkxJ(5ik    +   jdVx* ^    Zik (l) 

in  cartesian  coordinates.     It  should be noted  that  we  cannot 

'See   formulation   from Newton's   equations   in  Aooendix A. 

-_?~.   mmm LpWH.^jJUP gia«j|gpWf^aHWiWI BjaggafC Slii»X-»l"?tl   J 
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* 

exoress the contribution of Z •' to th : ^otent:... Censor as >? 

surface integral.  The net force or the rerion ia-.' be ext>re?sed 

as y'dS.Z*' , but in computing the potential tenso-" the oosition at 

which the force is exerted on the matter field is important 

because of J  under the integral.  Hence we have action at a 

distance appearing exolicitly.  Using (2.2.1), (2,2.3), and 

(2.2.4) we may rewrite (l) as 

,-i 
M * = M>lk *  /dV 4v Z1] dt 3x* 

+ rj [ - It /dVuV + /dV> uiuj + /dSi^ J6ik 

+ /dV|J  z1* 

where the comma indicates differentiation.  Prom Newton's 

equations 

,ri :3k , „Ik, Mli =/dS
k^aK + zlK) 

Thus, we have for the local motion the tensor equation valid in 

any coordinate system. 

,icjr„n i.J lhnn\^^ •g£ /dV* Ui|J(q'1) = /dV^u^u"1 + /dSkf J(q")d 

(2) 

+ /dV|^(qn) Z ik >k 

from which we see that the tensor viriai equations for the 

exterior velocity of a given region are independent of the 

Interior velocity field and its time derivatives.  This was noted 

in passing in a more restricted case in 2,2. 

We note that 

\ , 

H   xm   mm—pwp • •ntpw    —ahMHWWBW w»«*»g ~irnmrrMP"1  -r"'  -•-•«•  I 
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/dS   fkik = /dVrf1"'   + /d"jJtf" (3) 

Using   (3)   a/.^   (2.2.16),   (2)   mav be rewritten  as 

-^/dV^ouVU11)   =/dV|-^(qn) xik,  7ik 
4>k+Zik (4) 

or 

^r/dVuV(qn)   =/dSkf^(qn)    (<5ik+Zik) 

- /dv(6i;J+ Z1^) 

(5) 

If we   are   considering an   isolated  system,   the  surface   integral 

vanishes  and 

^ /dV^u1!J(q*)   = - /dV^+Z^) (6) 

—2.. is ju3t the energy oer unit volume of the stress field 

ZlJ  .  Thus, if we contract (6)', we have from 1.2 and (2.2.17) 

that 

im 

m 
• M 

. S3. 

• 

• t 
i 

-, 

4f = 2T + S 
at 

where T is the total kinetic energy of the local motions and 

S  = -Z? 

(7) 

(8) 

- . 
rs 

The  symmetric   and anti-symmetric  parts  of   (5)  may be written 

as   in  1.1  to  give 
if 

,2 

dt' 
,IiJ  = § /dSk \tH<j*)Ufr+Z*)   +     ^q")^* +   Z^)J 

(9) 

- /dV(<51J  +  Z1^) 

JL K^= 1 /dSk    [^(qn)(6ik H-  Zlk)  - f1(qn)(dJk + Z^ (10) 

Kin   n,lMi«HWBpgg*M«rg3gawP»ii        i  "»   ••' ""» •      ' '     "•••' „ j 
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whs re 

i/_n. I1J =-|/dV/cf1(qn) ^(qn) (11) 

K1J = \ ftf/o  (f ^q") U^ - |'(qn) U1 (12) 

For an isolated system the surface integrals vanish giving 

2 
4 i^' = - /dv (6ij' + z^) 
dtr 

(13) 

Contracting these two equations, we obtain 

dt 
= 2T + S 

(14) 

(15) 

£K-° (16) 

3,11 In the previous section we have set up the tensor virial 

equations in terms of a general stress tensor Z J.  It would be 

well if we note briefly the form of Z vfor various fields.  It 
9 

is readily shown  that for electromagnetic fields the components 

of the three dimensional Maxwell stress tensor are piven bv 

Z1^  = JrV + DiEJ - glj's (1) 

,„i_1    rvl.^1, (n B° + D E') (2) 

in MKSQ units.  gXJ is the matric tensor.  S is the energy density 

of the field. 

M 

In most  problems   in ma/rn^tohydro dynamics   it   is   possible   to 
10 entirely neglect the displacement current" The electromagnetsc 



-4.-;- • .».' ' '-W- •j^ir—rr-lil 

39 

field becomes, then, a magnetic field and is a "v.:-e r.tres? field 

with no associated inertia to be induced in our  equations.  We 

drop the terms involving the electric fie]d so that 

Z1^ = H^" - gi;JS (3) 

S=|giJH-H M (4) 

Further simplification may be carried out since the permeability 

of the conducting fluid usually aoproximates very closely to 

empty space and is in any case isotropic and homogeneous. 

In the case of a gravitational field v:e have the field 

intensit^r <JJ ~  given in terms of a scalar \L   according to 

\±J± = -y+A (5) 

so   that 

M 
*iJ V.i.l = 4TlG. r/° (6) 

"IT* 
i 
--• 

r. 

'I 
•: I 

/ 

k 
: 

V 
* 

*.i 
= - 4itG /° 

The force  ner unit  volume  is 

P1 =/o^
i 

(7) 

- 
• 

C=0 

Thus, in order- that 

p1 = Zik 

the s tress   tensor  is  defined as 

zii i- L^ W- g 
4irG 

,k 

i^L „ij„] 

(9) 

(10) 

-•.-i*Mi.-,S4je-i'.<v;p-= 

* I""* '.'•ffi.C^ ***-*i»--i 
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1 

where 

W = | vj, * v^. 
,1 

(11) 

In order  to   derive   (8)   from  (9)   and   (10)   we note  from   (4)   that 

the  curl  of '-X'"   is  zero. 

The   total   energy of  the  field   is 

S  = -Z* 

W 
4-rtG 

8iG^    ^i (12) 
.i 

Conclusion 

m 

4.1  It was Dointed out in 2.22 that the ideas basic to Drand.tl's 

and Heisenberg's formulations of turbulence theory arise as a 

natural consequence of the tensor virial formulation of the 

equations of p^otion.  Let us summarize the more important of these 

principles. 

The effect of multiplying by J  before summing over the 

particles in the region is to cancel out the effects of force and 

velocity fluctuations of larger scale than the reg?':n considered. 

The result is a separation of all effects into the loc-l and trans- 

local components.  It was then shown in 3.1 that the local tensor 

virial equations are indenendent of the translocsl field.  (2.2.18) 

shows that the translocsl field denencs on;v on the statistical 

orooerties of the local field.  We found in 2.2 that the statistical 

:i 

! 

-'"•" tV-: 
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pronerties of the local field relevant to a calculation of the 

translocal field nay be constructed in a natural way from a 

characteristic length and velocity of the local field, both of 

which depend upon the scale of the region used. 

i 
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Appendix A 

Ln 1.1 the terror vi.'ial equations were cievelooed in 

co.rtesian coordinates. Let  us nov* ver brieflv out] ine their 

develoonent :n a general coordinate system.  Let the coordinates 

of the vth particle •Z   •  Let the -ocsition of the vth narticle 

relative to the or^'p . "he ^^rssBnu^ by the vector & ( q ).  We 

note that 

The  Lagrengian   equation.,   of ration   are 

(1) 

rtk -i  a i v^ \\'°  )       V 
(2) 

and are readi!,-; sp^n to be covariant and of rank one because L 

is a scalar, dt is an invariant, and th   Q. satisfy (1.1.2) in 

which 5 W is a scalar.  M' n tinl^inp- by §,^( q ), (2) may he 

written as 

l\. , 
L     °„ q        ° ,3       a q 

(3) 
o q v^ a q" v^ 

(1.1.5)   —   (1.1.8)   are  redefined   as 

-1      VlJ   (vq  } TY± 
V 

Ik     3L PT^   =   >       £^        a' 

<2>j, = <Tl\qk> 

V 

3L 
.i 3 q- 

(4) 

(5) 

(6) 

^•-.•Mik^j&x'jIM^JrJ**.: .— 
Wl«i» imwwii^JitWWMt 

•• 
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Thus   (3)   is   the mixed  tensor  equation  of rank two 
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(7) 

dt     .1 

^&v    We    hcFtlTI   with    NpUit'nri'a    »rr»af lyHS 

v    v dt v (9) 

which are contravariant, we should have obtained the contravariant 

form of (8), in which 

J1*   =   Hvm^(vqk)   f\<f) 

2Tij  = Zl   mfH   qk)   f-\   qn) 
v 

V ^ V5       ' 

(10) 

(11) 

(12) 

I 

•WgWJt..    I'M i»". 
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Appendix B 

In 1.1 we tacitly assumed that the dynamics of our svstem of 

particles could be described in terms of the soace coordinates 

yq of each particle and the time derivatives ,,q .  These coord- 

inates do not include spin coordinates for the practical reason 

that we would then be faced with working in a space with a much 

more complicated geometry.  It follows, then, that if dipoles, 

quadripole*, etc, are to be considered, they must be decomposed 

into two, four, or more "elementary" particles with suitable 

constraints. 

With this decomposition it follows that the field of any 

particle must be spherically symmetric in at least the orooer 

coorainate system of the particle.  Hence the angular momentum 

of the system is conserved and the portion of Cj) J due to the 

interaction with each other of the particles in the region is 

symmetric in its indices.  We have denoted the symmetric portion 

of c£>1;5 byTiJ in (1.1.20).  Thus, if  V (  r) denotes the 

potential energy of the interaction of the vth and T}th particle, 

we have 

t        * 

V -•  V 
T}V     VT) 

We define Vx to be the potential energy of the interaction of the 

particles with themselves.  Thus 

*i = ill .vv (wp) 
Tl.V 

(1) 

wnere 

«W'>"-61J i\ft -fV>] [iV'-lVi 
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V. is the local portion of V. 

If we define L^ as the local portion of L, i.e. due to the 

interaction of the particles in the region with each other, then 

from (1.1.7) we have in cartesian coordinates that 

-r-j - ~ 
8 x v 

3 

! 

E 

! 

r1* = -r- y avn 

3 xJ 

= ~s-   x1 -d— vx    ST r T1,V 

--x: 
TJV       L_ 

V(     r) 
7]V       T}V 

1 a^ 

a x- 

i -1,   -3 

T1VJ 
W^m,**  Jagj-jgV 

S    r V 

%,>v' 

3nvV'^'((v^-n^'v^-^3' 
3„ r 71V 

(    r) 

iy - y) (vxJ • y) 

T),V     ' 

3-,v(^.r)   (^1-T1xi)( xJ-   xj) 

vr)v 
(2) 

We see that 7^^ = p as required.  Let us diagonalize T1! 

by referring it to itr principal axes.  We have, then, only the 

three terms I        ,  Repeated Greek indices do not imoly summation 

convention.   /    is the contribution to the potentialtensor of 

the forces and displacements in the a direction. 

If the  V(  r) are homogeneous of degree n, then 

T^:=-|X .w»<•r) 
n,v 

a    a x — x 
v B_ 

Tlvr 
(3) 

I 
; 

I  < 

, 
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i 
8 

We define the diagonal tensor of the second rank ("7" )*" by 
a a\2 

V(     r)P- 

•^--  T1V      TlV 
•n,v 

•nv XTIV 

Using   (1)   and   (4),   (3)  may be  written 

(4) 

1 1 

i 

-f• =- nO^)2 V1 (5) 

The 7"" may be interpreted in a sense as the direction 

cosines of the eccentricity of the region.  We note from (5) 

that 
3 

~S^1 
(^a)2 = 1 

Dynamical  symmetry cf  the region  gives Y^"    -   7^     -   ir    . An 

elongation of the region in the P direction makes 

the other two y , etc. 

larger than 

1 
I 
i 

\ •. 
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